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1.0  INTRODUCTION

" -

Wide usage of advanced composite materlals In aerospace systems Is
expected to become a reallity over the next few years, A V/STOL fighter
alrcraft is one of several Navy articles projected to be fncreasingly
dependent on composite materials for primary and secondary structural components.

Presently, the response of advanced composlte materfals to arbltrary load
and environments Is not well-understood, and service conditions often have a
signlficant adverse effect on the material's performance. Analysis of
structural response to severe environments and related fatigue lifetime predic-
tfon methods [s presently insufficient. This composites research program will
asslst In resolving this deficiency in the technology base. This in turn
will ensure that the confident usage of advanced composite materials by the

stress analyst and designer can be attained In the near future.

The overall objectives of this research program are:

o To ascertain if the mechanical response of AS/3501-6 graphite/epoxy

-y

composite materfal, subject to varlous time, temperature and molsture
effects, can be characterized using traditional viscoelastic shift

factors, and to formulate a master curve of material property dependence

on time, temperature and humidity,

o To ascertain the feasibility of predicting fatigue fallure of a composite
material by accounting for the linear viscoelasti¢ behavior of the resin
In various temperature and humidity environments.

o To determine if a specific thermal conditioning environment can be
directly substituted for a specific moisture conditioning envlronment,

over a prescribed temperature vs. humidity range for AS/3501-6 graphlte/

epoxy material, and obtain an equivalent moisture effect on mechanical




and fatigue properties. If this can be shown, a substantlal cost
and time savings in moisture conditionlng of the test specimen can
be achieved and possibly extended to other composite specimens.

During the first phase of this program], the basic quasi-static properties
of AS/3501-6 graphite/epoxy composite materlal, subjected to various tempera-
ture and humidity environments, were characterized through linear viscoelastic
theory. The first and third objectives were achieved, at least for the
environments Investigated. This Phase |Il1 program is a continuation of the

Phase Il2

effort to investigate the fatigue characteristics of composlites,
which is the second objective of this research program. Analytical and
experimental studies were conducted and the results obtalned thus far are
covered in this report. Specifically, fatigue tests for specimens of practical
layups (jﬁ5/902)s and (O/_4_-_105/90)S were conducted at four temperature/humidity
environments. Analysis indicates that the effective matrix modulus, as
affected by fatigue damage and the environments, has an important bearing in
the basic fatigue mechanism and the fatigue analysis model.

Test results in Phase |l and Phase !11 will provide adequate amounts of

data for the evaluation in Phase |V of the proposed basic fatigue failure

mechanism.,
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2.0 SPECIMEN FABRICATION AND ENVIRONMENTAL CONDITIONING

Hercules AS/3501-6 prepreg tape was used to prepare the specimens for
this program. Ten composite panels (Table 1) were fabricated by Vought's
Manufacturing Research and Development Division per the fabrication procedure
in Table 2 as recommended by Hercules. Panels A, B, and C were for twenty ply
90° specimens and Panel D was for eight ply :ﬁso speclmens. Panels El, E2,
and E3 were for quasi-isotropic layup (O[iﬁ5/90)s. Panels F1, F2 and F3 were
of layup (:ﬁS/SOZ)S. Each panel was Inspected with ultrasonlic C-scan and
defects were found only in panel A using photomicrographs.

A process control panel which Is of unidirectional layup was separately
made to evaluate the quallity of the panels. The mechanical properties of
the specimens from the process control panel are summarized Iin Table 3. The
flexural strength, flexural modulus and short beam shear results indicate
that our panels yield comparable properties with vendor published values for
AS/3501-6 composite.

The fatigue specimens are 7.0" long by .75" wide as shown In Flgure 1
which is suitable for the Shore Western test machine. A specimen fabrication
procedure modified from Phase |l to make fatigue specimens was used and lis
shown in Figure 2. This procedure minimizes edge defects resulting from
conventional cutting techniques. Inspectlon of the specimen surface under
the 16x microscope shows the wafering diamond cutter does produce a quallty
surface finish, Most machining defects are not large enough to see at 16X

on the wafering cut surface, including the edge area.
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TABLE 3. MECHANICAL PROPERTIES OF PROCESS CONTROL PANEL.

SHORT BEAM SHEAR FLEXURAL STRENGTH FLEXUR?L MODULUS
(pst) (pstI) (105 psi)
20,904 247,983 17.9
21,204 241,935 18.5
27,051 259,523 19.3
AVE. 20,719(17,500) 249,814(260,000) 18.6(20.6)

NOTE 1: Average Fiber Volume Content is 68.2% For The Panels

2: Vendor Data Are in Parentheses For a 62% Fiber Volume Per AS/3501-6
Data Sheet

l/——-glass/epoxy tab

M |
— /l ~———————
TN aeeesee
15" ]
)
0.75"

7.0“ T

FIGURE 1. TYPICAL FATIGUE SPECIMEN,
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A total of 324 specimens were fabricated according to Table 1. in
general, 90° panels usually are of worse quality than that of other panels.
Figure 3 Indicates the typical bad areas observed on some 90° specimen
surfaces that were not detected by the C-scan technique. It seems that
twenty plies of 90° layers did trap some volatiles in the laminate during the
curing process and created a porosity problem.

An enclosed glass chamber and a forced alr oven were used to environ-
mentally condition the specimens to the desired moisture level. A saturat.d
aqueous solution of Sodium Bromide (NaBr) In contact with a solid phase of
the salt at 170°F temperature was used to generate the 50% relative humidity
level and that of Sodlum Fluoride (NaF) was used to generate the 95% relative
humidity level. Based on results of Phase il, 85 days of conditioning are
necessary to insure that the 90o specimens with a 0.10" thickness attain at
least 95% saturation at the 170°F temperature environment, while fifteen days
of conditioning are required for the other three types of specimen layups with
0.04'" thickness.

Before environmentally conditioning the specimens, tab areas of all the
specimens except for Panel E3 were coated with Ecco-coat VE on top of scotch
tape to slow down the Ingress of moisture i{nto the bondline so that the shear
strength of the adhesive in the tab area could be maintained at the desired
level (around 5000 psi adhesive shear strength at room temperature) during
the fatigue test. Specimens from Panel E3 were wrapped with aluminum backing
tape instead of scotch tape. Fatigue test results for (0/:_‘05/90)S specimens
indicated that only minor improvement in resisting moisture was Pproduced by

using the aluminum backing tape.
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FIGURE 3. POROSITY OBSERVED O Thi FYGE OF
90C-SPECIMENS ., (1A¥)
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3.0 TEST PROCEDURE

Static and fatigue tests were conducted according to the test matrix
In Table 4, Static tests provide data to evaluate the batch to batch prop-
erty variations and to characterize the basic material propertles. Static
load-displacement relations at various environments were recorded on both a
strip chart recorder and X-Y plotter. Fatigue tests were conducted within
various constant environments by keeping the mean stress level, stress ampli-
tude, and environment unchanged during the fatigue cycling.

The general static and fatigue test arrangement is shown in Figure 4.
Two environmental extensometersI were used to monitor the displacements
during the static tests and fatigue tests. Both extensometers were callbrated
for environmental stability and accuracy at the beginning of the program.
During the tests, each specimen also had a resistor type temperature sensor
(ETG-50B from Micromeasurement) attached to its side surface. The load, LVDT
readings, and temperature were recorded using a Sanborn strip chart recorder.

The Shore Western test machine had a recording chart to monitor the temperature

and humidity during the testing.
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4.0  STATIC TESTS AND ANALYSIS

All static specimens were conditioned to close to 95% of the saturated
molsture levels In the environmental chamber before they were tested in their
appropriate environments. The load rate was set at 250 1b/min. The four
environments for specimens of layups (0/+45/90), and (1ﬁ5/902)s were 75°F/50%RH,
132°F/50%RH, 132°F/95%RH, and 170°F/50%RH. These were the environments used
Iin Phase |l for 90° specimens and (245)2s specimens. The environments for 9n°
specimens in Phase (Il were IOOOFISOZRH, 100°F/95%RH, 150°F/50% RH, and 150°F/
95%ZRH and these environments are complementary to the previously mentioned four
environments that were used In Phase || In order to broaden the data base for
analysis,

The typical stress-strain curves for these three types of specimens are

shown in Figure 5. The test results are shown in Table 5 for 90o specimens
and Table 6 for specimen types (0[145/90)5 and (:-_105/902)s . The 90° specimen
data obtained from Phase Il is also included in Table 5 for comparlson. It
Is observed that the mechanical properties from the current batch is superior
to that from the Phase 1l batch. One explanation for that difference, based

3

on the experience with Kevlar/5208 system”, is that the larger and thicker
panels trap more volatile material in the laminate during the curing process.
Panel sizes of 20' x 16" and 48'" x 16' were used In Phase Il. Smaller panels
(20" x 16" or less) were fabricated in this Phase Il program. This observation
Is also useful in explaining the fatigue characteristics of the 90° specimens.
Specimens of layup (tﬁ5/902)s have unique characteristics In thelr stress-

strain behavior. A typical stress-strain curve Is shown in Figure 6 and

three characteristic reglons common to all curves were observed. There are

two distinct slope changes along each curve that are identified in Figure 6,
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The straln region between the initial point and the first slope change is
designated as Region |. That between the first and second distinct slope
change is designated as Region Il. That between the second and the failure
point is designated as Region [1l. Apparently the first slope change occurs
when transverse cracking starts in the 90° layers. The cracking action
continues In Region Il and the second slope change point is reached. The
curve in Reglion Il is relatively flat where the failure process accelerates.
Mechanical response data related to these observations are summarized in
Table 7 and normalized in Figure 7. The E, and E3 values in Table 7 are

the initial modulus and average modulus for Region Il, respectively. The
Ey value is the initial modulus of Region 11| where 90° lamina presumably
do not support the axial load and provide only lateral constraint on the
+45° laminae. Two features of (+45/90,). specimens that relate the static
test results to a fatigue analysis can be summarized as follows:

a. The 90° plies contribute to the laminate strength if the fatigue

stress level is under 65% of the static ultimate strength. (Fig. 7)

b. As the fatigue loading continues, the (tﬁ5/902)s specimen will

creep under the mean stress and eventually fail in strain Regions |1
or 11l of Figure 6, with the 90o lamina having only a few or many
transverse cracks, respectively.

Static tests on (0/+45/90). specimens, which represent one type of
common layup in structural applications, were also conducted to establish
the baseline data for the fatique tests. The results are shown in Table 8 and
Figure 8. The environments seem to have little influence on the static proper-

ties of this quasi-isotropic laminate based on the results in Table 6.
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In the laminate, the O°-ply (which is insensitive to environmental effects)
is the primary load bearing ply and, thus, dominates the laminate properties.
During initlal loading In the Shore Western Machine, some 90° piies started
splitting (delamination) along the mid-plane (see Figures 9a and 9b) at around
a 20,000 psl stress level (which is about 24% of the fallure strength of the
specimen). A retest of a dry specimen showed that the splitting of 90° layers,
Figure 9c, dld not happen until the load was close to ultimate load. Thus,
the failure mode of the (0/:0-__105/90)S specimen is influenced by the environment.
During Phase Il and Phase 111, four types of specimen layups were studies:
(90)5g, (+45),¢, (+45/90,)s and (0/+45/90)g5. For understanding in interpreting
the specimen data, the edge effect in these specimens should be addressed. The
edge effect which results from interlaminar shear or tension in a composite
with a practical layup pattern has been identified as one of the primary

L

failure mechanisms“’5’6’7. Wang and Crossman® examined a (iﬁs)s layup with the
finite element technique to assess the high stress behavior of the edge area.
The similarity of the deformation and boundary layer for (+45),. and (+45),
have been compared by Pipes and Pagano®. In the linear range of the material
and in a room temperature environment, the calculated maximum interlaminar
tension is about 14% of the axial stress and the interlaminar shear stress
is about 60% of the axial stress. Thus, interlaminar shear at the edge of the
specimen may have a strong bearling on the crack initiation and failure of the
(1&5)25 specimens.

To ascertain the impact on the 2dge effect in the failure of (i_lo5/902)s

specimens, Pagano and Pipes6 showed results for a (tﬁ0/902)s specimen which

is very similar to a (:PS/BOZ)S specimen; their results indicated that the
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(a) 90° Layers® Cracking in a
759F/50% RH Environment

g e
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(b) Final Failure of (0/+45/90) Due to
90° Lavers' Cracking >

(¢) On-Set of 90° Layers' Cracking
in Room Temperature Dry Environment

FIGURE 9. THE CRACKING OF 90° LAYERS IN (0/445/90)  SPECIMENS
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delamination barely precedes ultimate failure, The Interlaminar shear
phenomenon for this type of specimen was not analyzed, The static fallure
behavior of the (tﬁS/SOz)s specimen Indicates that the interlaminar shear
effect between +45 plles is not as severe as that of the (+45)y specimen at
fallure. The ultimate strain of the (+45); specimen Is 90,000 u in/in as
compared with about 10,000 u In/in for the (+45/90,) specimen, where the
90° lamina puts a lateral constralint on the +45° laminae. The falled
(tﬁS/SOz)s specimen does not show the necking down in the gage section, whereas
the necking down is typlical In the failure of (+45),, type specimens. Thus,
90° laminae reduce the relative deformation between the +45 lamina and -45
lamina and reduce this particular interlaminar shear stress.

Statis tests indicated that the edge damage for the (0/+45/90); specimen
s primarily from the interlaminar tension in the 90° lamina (Flgure 9).
Edge delamination for the (0/+45/90); specimen at 60% of the average static
strength has been observed by Ramani and Williams’ and is considered by them

to be the primary fallure mechanism in their fatigue tests.
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5.0 FATIGUE TESTS AND ANALYSIS

Experimental Observations

Fatigue tests were conducted for three types of specimens, (90)20.
(+45/90,) and (0/+45/90) . Pin type loading fixtures were used for the
testing of (90)20 and (iPS/SOZ)S specimens. The (0/+45/90), specimens had
additional clamp plates on the end tabs during testing which reinforced
the bearing capability of the tab area. The (iﬁS)ZS specimens (Table !)
were saved for later testing when a strain-controlled fatigue test capablllty
becomes available; they will be tested during Phase IV. The temperature/
humidity environments for the fatigue tests of varlous types of specimens are
summarized in Table 9.

The fatigue test frequency was set at 3 Hertz with the load ratio being
0.1. Two specimens were tested at the same time. Specimens tested at one
hydraulic station had a temperature sensor attached. The specimens tested
at the other hydraulic station had both a temperature sensor and an extenso-
meter. A diagram depicting the fatigue test set-up Is shown in Figure b,

As discussed in Section 3.0, the displacement in each specimen 1s measured
by an extensometer, and the LVDT signals in the extensometer are recorded
on a strip chart recorder. The temperature in the specimen ls monltored by
the temperature sensor (ETG-50B from Micro-Measurements) and is recorded on
the strip chart through the Vishay 2120 amplifier.

The fatigue test results at environments 75°F/50%RH, 132°F/50%RH, 132°F/
95%RH, and 170°F/50%RH for (jﬁ5/902)s are listed in Tables 10, 11, 12 and 13
respectively. Surface temperature data are included In these tables. Three
peak fatigue stress levels, 50%, 55%, 60% of the ultimate static strength,

were used.
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Most of the fatigue failures of the (+45/905)  specimens occurred with-
in the specimen gage area (Table 13). The temperature Increase on the specimen
surfaces was measured using temperature gages and was found to be within the
2° - 59F range. The maximum temperature ircrease observed was 119F. The
fatigue strain history for the (+45/90;). specimens was monitored by the
extensometer. The mean fatigue strains at various environments are shown In
Figures 10 to 13 and the strain amplitudes (% peak-to-peak) are shown In

Figures 14 to 17, where different symbols indicate a different specimen at

each loading environment. Bv using these fatique straln data and comparing i
them with the static stress-strain curve from Figure 6, the fatigue fallure }

process can be interpreted. Since the maximum fatigue stress level was 60%

of the ultimate strength, which is under the minimum 65% level that 1s required
for the 90° ply to start cracking (according to the static results in Figures 6
and 7), the (tﬁ5/902)s specimens were considered structurally sound at the
beginning of the fatigue test. €Edge effect as discussed In Section 4.0 does ‘
not cause edge cracks at 60% ultimate stress level. As the fatigue cycling }
continues, the straln level gradually increases due to the effect of the mean '
fatigue load. The S/N curves are shown .- Figure 18, excluding data from

specimens which failed at holes. i

Test environments for (0/1_165/90)S specimens are shown in Table 9. The

mechanical properties of the (0/+45/90); layup are considerably stronger than

those of the (i_l&5/902)s layup, as shown in Table 6. The tabs with pins and

adhesive can take static loads up to 2700 lbs. During fatigue loading, the
adhesive could not always take the oscillatory load. Shear-out failure of

the laminate from the tab area around the pin hole Is common in the (0/+45/90)
specimens, especlially in the high humidity environment. Molsture-induced
degradation of the adhesive in the tab areas was suspected for thls type of

hole failure mode.
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To verify this and to generate fatligue data, thirty-six more specimens of
(OltﬁSISO)S layup were fabricated (from Panel E3 In the Table 1) for envlron-
mental conditioning and testing. The end tab area on these new specimens was
protected by wrapping It with aluminum backing tape, which provides better
protection agalnst moisture than the Mylar scotch tape, Test results on
these thirty-six specimens showed only minor improvement in reducing fatigue
failure in the hole area. The 95% R.H. conditioned specimens could not take
the fatigue loading. Without these hole failure data, the fatlgue results
for the (0/+45/90), specimens are shown in Tables 14~16 with surface tempera-
ture data Included. Environments 75°F/50%RH and 130°F/50%RH provided more
fatigue data points because hole failure was less. common in these two environ-
ments. Figures 19-22 show the mean strain and strain amplitude histories in
fatigue cycling. It is noted that the middle 90° layers split in most of the
(0/+45/90), specimens In their first hundred cycles. Figures 19 and 20 indicate
that creep strain exists even in the fiber-dominated laminate construction. The
S-N curve is shown in Figure 23,

Some 90° specimen fatigue tests were conducted at 100°F/50%RH, 100°F/95%RH
and ISOOF/SO%RH environments. As seen in the statlc test results from Table 5,

the strengths of 90° specimens are about 15% higher than those in the Phase 11

program. Fatigue data of the 90° specimens conducted during Phase 1 and
Phase 11l are not directly comparable without further study. Hence, current
fatigue data for the 90° specimens and their analysis will not be reported.
For reference purposes in the following discussion, the S-N curves for (90°)20
and (+45), . specimens from Phase Il are reproduced In Figure 24 and Figure 25.

Experimental-Theoretical Correlations

in Phase |, the creep behavior of different laminates at low stresses was

1

related to the in situ creep compliance of the matrix’' using standard equations

42
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based on micromechanics and laminate theory for elastic media. By thls
procedure, It was possible to correlate laminate creep behavior for various
environments in terms of a single master matrix creep curve and temperature
and moisture-dependent shift factors for the matrix. For structural design
purposes, one would reverse the process and use the constituent fiber and
matrix properties to predict creep response of an arbitrary laminate by means
of micromechanics and lamination theory.

A fatigue and fracture theory for viscoelastic composites should be
capable of providing similar correlations and predictions. In this section,
we shall demonstrate that some aspects of the fatigue and static fracture data
given in the report can be correlated using the same equations as employed in
the creep theory. This study will add in understanding the observed laminate
behavior and In providing a basis for the development of a physically-based
fatigue theory.

Compliance predictions have been made in which constituent properties
for the (jﬁS)zs and (90),q laminates found from Phase | were used. The results
are given in Figures 26 and 27 for the compliance in the direction of loading.
Figure 26 shows the laminate compliance as a function of matrix compliance, for
the four laminates employed in the fatique tests. For ease of later comparison
with data, compliance curves for the (+45/90,), and (0/+45/90)4 laminates are
converted to modulus curves in Figure 27. A limiting modulus exists for both
the (iﬁS/SOZ)S and (0/1_105/90)S laminates when Ey = 0; these limiting moduli are
actually those for a fiber network in which the matrix does not support any

in~plane load. The matrix serves only to maintain a condition of uniform
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in-plane strains through the laminate thickness; this uniformity Is achieved
through interlaminar shear and normal stresses, which In practice are 1limited

to the neighborhood of the laminate edges unless the matrix modulus is extremely
iow compared to the fiber moduli.

As a working hypothesis for using these curves to interpret fatigue and
static fracture data, we shall suppose that gross laminate fallure initiates
when microcracking and other degradation processes reduce the (effective)
matrix modulus to a relatively very small value. (This same type of failure
criterion was used successfully by Alexander et al.8 in characterizing static
fracture of a random glass fiber composite.) With this reduction, interlaminar
stresses can be expected to produce overall sample failure through delamination
and other complex fracture processes. Inasmuch as this latter stage of the
failure process will be specimen size related, and therefore is not a funda-
mental characteristic of the laminate, it is reasonable to define a failure
criterion in terms of some reduced value of the matrix stiffness for which
interlaminar stresses and/or delaminations are widespread in the samples.

This degraded matrix stiffness value may be somewhat laminate-dependent and
possibly better characterized using orthotropic matrix moduli, but for now
we shall arbitrarily interpret failure using the limiting laminate moduli for
Eqy = 0 in order to make a preliminary assessment of the failure model.

The horizontal lines drawn in Figures 10-13 and in Figures 19-20 represent
the strain level where the S-N curve shows strong run up. The predicted mean
strains using the laminate moduli for Ey = 0 are also indicated in the
Figures. It is seen that the proposed criterion predicts more or less
the strain at which the actual mean fatigue strain starts to increase

rapidly with the number of cycles, and therefore represents a




conservative (but not too conservative) prediction of fatigue fallure. With
other R-values, total straln or other combinations of mean strain and strain
amplitude may be a better failure parameter than mean strain; but additional
study of thils Is needed.

As a further test of the fallure criterion, static stress and strain at
failure for the same laminates are plotted in Figure 28. Failure in the
(+45/90,); laminate Is assumed to occur at the second slope change point in
Figure 6; beyond this point the stress-strain curve is very flat, presumably

corresponding to massive specimen damage as a result of widespread inter-

laminar stresses. Prediction of the fallure secant modulus for both laminates,
(:ﬁ5/902) and (O/iﬁ5/90)s is shown in Figure 28 using moduli from Figure 27
for Ey = 0. Good agreement with the experimental data is exhibited; since

we have used Ey = 0, it is encouraging that the predictions are at the lower

edge of most of the data.

The modulus of the (jﬁS)zs laminates vanishes when Ey = 0. However, as
shown in Figure 29 (from data in Reference 2), the stress and strain values
for static fracture fall reasonably close to the line predicted by using a
laminate modulus corresponding to a matrix modulus which is 10% of that for
the undamaged state. It should be added that if we had used this same matrix
modulus In predicting static and mean fatigue moduli at failure for (+45/90,)
and (0/+45/90), laminates, the results would have been practically the same

as for Ey = 0; i.e. for these laminates, there is little difference in the

laminate moduli using either Ey=0or a 90% reduction factor applied to the
undamaged value.

It is belleved the above comparisons serve to bring out the importance
of the behavior of the effective matrix modulus in understanding and predict-

ing failure of composite materials. For example, various predictions, such

as the effect of temperature and moisture on composite material failure,
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number of fatigue cycles-to-failure, creep~rupture times, etc., should be

B

in large part concerned with prediction of effective matrix modulus. For
example, it may be possible to predict the number of fatigue cycles to
failure, by predicting average matrix softening within each ply in terms of

the damage parameter,

! (€
| L'[o f&lef)qdif 1 = measure of matrix damage (1)

{where q is a positive constant and Ep is reduced time or reduced number of
cycles) which results from the consideration of microcrack growth.g'|0 The
quantity o ¢ is a suitably defined average stress invariant in the matrix,

such as the average octahedral shear stress previously used to characterize

11

nonlinear viscoelastic behavior of lamina. The reduced time, EF’ is

_ ¥ ’
B = 'fo dt /al, (2) |

where a;M is not necessarily the same as ary for creep behavior at low
stresses. Indeed, a{M can be expected to depend on not only temperature and
moistute, but also on matrix stress level]] (including residual stress); the
differences between shift factors for each laminate studied in this program"
may be due in part, at least, to the different matrix stress levels.

The most appropriate damage parameter(s) may depend to some extent on

the moisture content, temperature, frequency, etc., considering the fact that

these factors influence the nature of microcrack growth (i.e., continuous or

stop-start (unstable) growth) as well as whether or not the matrix behaves in

a brittie or ductile manner.] 3 Nevertheless, it is suggested that a good
starting point for predicting matrix degradation would be to use the damage
parameter in Eq. (1) to evaluate the fatique data collected in this research
program. A test of the theory would consist of determining how well the

criterion,

/ tf01¢f)quT ~ constant (3)

(e}
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predicts failure time or number of cycles to failure for the critical ply;

Oe » @s noted above, Is possibly the average octahedral shear stress in the
mairix and the critical ply for the laminates in Figure 27 would be assumed

as 90° ply. The particular laminate construction would determine the relation
between Uef and applied laminate stress, as well as the limiting laminate
moduli for small values of EM'

1t should be noted that this approach to predicting faliure of laminates
is similar to that discussed by Halpin et al.]h only to the extent that
damage Is assumed to depend on the history of stress raised to a power. In
contrast to the theory In Reference 14, a measure of the matrix stress level,
rather than externally applied stress, is used in the failure prediction.

In this discussion of failure theory, we have not introduced direct
effects of delamination. Rather, delamination was tacitly assumed to occur
(if significant at all) close to the time of failure, and to not have an
important influence on the total time for progressive matrix damage. Never-
the less, the failure criterion, Eq. (3), could be viewed possibly as the
measure of critical matrix softening for which the delamination energy release
rate exceeds the surface energy required for delamination.

This aspect of the problem is under study as part of a separate project
in recently begun analytical research at Texas A&M University under the
direction of R. A. Schapery. initially, the (tﬁS/SOz)S laminate is being
studied; results for the critical matrix modulus and laminate failure strain
will be compared with the data in this report. Further related work at
Vought and Texas A&EM University will be coordinated, and include consideration

of direct coupling between progressive matrix softening and delamination. It

is expected that an important result of these efforts will consist of a

prediction of the influence of temperature and moisture on fatigue strength




{ (ref. Figures 18, 23, 24, 25) in terms of the in-situ matrix creep compliance
and its dependence on temperature and moisture.
é
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{ 6.0 DISCUSSIONS AND CONCLUSIONS ;

Efforts in Phase || and Phase |l of this program have generated most ‘

g,
E
|
3
|

of the basic data believed needed for the characterization of the static

fracture and fatigue failure AS/3501-6 graphite/epoxy material. Apalysis

of the data iIndicates that there is close correlation between the static

T REE

fracture and the fatigue failure process through the matrix modulus, and
two parts of the failure process can be hypothesized for composite specimens.
First, microcracking and other degradation processes reduce the matrix
(effective) modulus to a relatively small value. Second, due to the low
matrix modulus, the Interlaminar stress spreads out from the edge area.
The zone of high interlaminar stress then initiates gross failure, possibly
in the form of delamination.

The above assessment on the composite failure mechanism suggests that a

failure can be predicted using a critical value for matrix modulus if one

can neglect the time required for the stage of gross spreading of delamination
of interlaminar stresses. Thus, prediction of the effective matrix modulus
as a function of temperature, moisture, number of fatigue cycles. etc., is
‘é needed. For further development of the fatigue theory, it is important to
test the fatigue failure criterion, equation (3), to predict number of cycles
to failure by Incorporating the limiting laminate moduli concept. Specifically,
for further development work in fatigue characterization, we need to:
(1) Study in more detail the correlation between static fracture and
fatigue failure from existing data.
(2) Perform calculations of the damage parameter, equation (3), for

each ply and relate it to the effective modulus using strain data

and predictions of laminate moduli.




(3) Characterize the shift factor a{M in fatigue as a function of !

temperature, humidity and matrix stress level.

(4) Determine through comparison of theory and experimental data the
appropriate stress invariant in equation (3); existing static

deformation and failure properties would provide data for initial

compat fson

lhese are the tasks to be conducted in Phase V. !
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